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In this review, we describe the role of oxidized forms of nicotinamide adenine dinucleotide (NAD+) as a molecule central to health
benefits as the result from observing selected healthy lifestyle recommendations. Namely, NAD+ level can be regulated by lifestyle
and nutrition approaches such as fasting, caloric restriction, sports activity, low glucose availability, and heat shocks. NAD+ is
reduced with age at a cellular, tissue, and organismal level due to inflammation, defect in NAMPT-mediated NAD+

biosynthesis, and the PARP-mediated NAD+ depletion. This leads to a decrease in cellular energy production and DNA repair
and modifies genomic signalling leading to an increased incidence of chronic diseases and ageing. By implementing healthy
lifestyle approaches, endogenous intracellular NAD+ levels can be increased, which explains the molecular mechanisms
underlying health benefits at the organismal level. Namely, adherence to here presented healthy lifestyle approaches is correlated
with an extended life expectancy free of major chronic diseases.

1. Introduction

Fasting, caloric restriction, sports activity, low glucose avail-
ability, and heat shocks are lifestyle and nutrition approaches
that influence NAD+ levels [1–6]. Deficiency in NAMPT-
mediated NAD+ biosynthesis, increased inflammation, and
the PARP-mediated NAD+ depletion are causes of reduced
NAD+ levels with age at a cellular, tissue, and organismal
level [7, 8].

Coenzyme nicotinamide adenine dinucleotide (NAD+),
which contains two covalently joined mononucleotides (nic-
otinamide mononucleotide or NMN, and AMP) [9], has an
important role in an energy metabolism like mitochondrial
electron transport, glycolysis, and citric acid cycle [10] in
order to generate adenosine triphosphate (ATP) [11].
NAD+ is also a rate-limiting substrate for many signalling
enzymes such as sirtuin (SIRT) proteins SIRT1 and SIRT3,
the poly (ADP-ribose) polymerase (PARP) proteins PARP1
and PARP2, a COOH-terminal binding protein (CtBP),
cyclic ADP-ribose (ADPR) synthetases CD38 and CD157,
and many other NAD+-dependent enzymes. These enzymes

are involved in important cellular processes, like DNA repair,
stress response, genomic stability, chromatin remodelling,
circadian rhythm regulation, cell cycle progression, insulin
secretion and sensitivity, and expression of the inflammatory
cytokines, thus translating changes in energy status into met-
abolic adaptations [12]. NAD+ is recycling during ATP for-
mation in processes of glycolysis, beta-oxidation, Krebs
cycle, and electron transport in cytosol and mitochondria
and shifts between reduced and oxidized forms as required
for the continuous flow of electrons across the metabolic
pathways. Therefore, the NAD+ molecule is conserved dur-
ing these processes. On the other hand, the NAD+ is con-
sumed during cellular signalling, in adenosine diphosphate
(ADP)-ribosyl transfer reactions, by poly-ADP-ribose poly-
merases (PARPs), sirtuin deacetylases (Sirtuins), and the
cluster of differentiation 38 (CD38), i.e., the nicotinamide
(NAM) unit is separated. NAD+ half-life is between 1–2h
in the cytoplasm and nucleus and approximately 8 h in the
mitochondria [13] and can be salvaged and reused by three
pathways: (1) de novo synthesis (from L-tryptophan), (2)
Preiss-Handler pathway (from nicotinic acid or nicotinic
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acid ribose), and (3) salvage pathway (from niacinamide/ni-
cotinamide, nicotinamide riboside, and nicotinamide mono-
nucleotide) [9, 14–18]. NAD+ is mainly produced by the
NAD+ salvage pathway where nicotinamide phosphoribosyl-
transferase (NAMPT) is the rate-limiting enzyme, converting
NMN into NAD+ [19–21]. NAMPT regulates processes
related to the pathological processes of obesity and a type 2
diabetes mellitus by influencing lipid and glucose metabo-
lism, insulin resistance, the oxidative stress response, apopto-
sis, and inflammation [22, 23].

The NAD+/NADH ratio influences also the reactive oxy-
gen species (ROS) and oxidative stress formation through
regulation of intracellular ATP production, different meta-
bolic enzymes, and redox state. An increase of NAD+ and/or
NAD+/NADH ratio can increase cell defence, can induce
DNA repair and apoptosis through activation of PARPs
and sirtuins, and thus plays an important role in the preven-
tion of cancerogenesis and many other diseases [14, 24]. For
example, cellular NAD+/NADH ratio regulates SIRT1 enzy-
matic activity, which further regulates a number of target
proteins [25], such as FOXO family of transcription factors
[26–28], p53 [29, 30], PGC-1a [31, 32], and NF-kB [33–35].
While chronic diseases and ageing are related to decreased
NAD+ levels [16, 36, 37], different lifestyle factors have been
found that ameliorate NAD+ bioavailability, which positively
affects SIRT stimulation and subsequent PGC-1α and
FOXO1 expression, leading to mitochondrial changes and
metabolic adaptations (Figure 1) [38]. Increased available
cellular energy, improved stem cell and mitochondrial
function, DNA repair [39], telomere maintenance [40], and
enhanced metabolic activity are prerequisites for effective
health span and life span [41, 42] as demonstrated by studies
where NAD+ levels were intentionally increased [23, 43–48].

2. Caloric Restriction, Eating Habits, and
NAD+ Levels

A well-balanced diet in macro- and micronutrients repre-
sents a basis for health and well-being. Limited calorie
intake continues to be the strategy supported by the great-
est evidence for ensuring increased lifespan and health [49].
In different model organisms, a significant increase in life-
span was reported if calories were restricted between 25–
60% relative to normally fed control [50, 51]. How is calo-
ric restriction connected with NAD+ levels? CR stimulates
the NAD+ salvage pathway leading to increased NAD+ bio-
availability by activating the expression of NAMPT, which
triggers the NAD+ salvage pathway by transforming nico-
tinamide (NAM) to NAD+ [52]. Caloric restriction
increases NAD+ levels, while lowers NADH levels and acti-
vates sirtuins [53]. For example, caloric restriction extends
the yeast’s life span by lowering the level of NADH, since
NADH is a competitive inhibitor of Sir2 [54]. Thus, activa-
tion of sirtuins with a sufficient amount of bioavailable
NAD+ is a necessary condition for the life-span extension
provided by CR [55, 56]. Specifically, Sirt1 regulates CR
by detecting intracellular low energy levels and provoking
physiological changes relevant to health and longevity

[57]. On the other hand, inactivation of SIRT1 results in
the prevention of CR-mediated lifespan extension [58].

Studies on caloric restriction revealed that it is more
important to improve the ratio between NAD+ and NADH
than to raise the overall amount of cellular NAD+ [59].
Namely, caloric restriction reduces NADH amount more
than it influences the NAD+ levels, at least in yeast [54,
60]. It seems that lowering NADH is an important factor
responsible for the increased activity of the NAD+-consum-
ing enzymes, as NADH is an inhibitor of Sirtuins and
PARPs [54].

Besides by caloric restriction, NAD+ levels can be
increased with food and commercially available supplements.
Ingestion of the amino acid tryptophan or forms of vitamin
B3 (niacin, nicotinic acid, niacinamide) as well as nicotin-
amide riboside (NR), nicotinamide mononucleotide
(NMN), and nicotinic acid riboside (NaR) stimulates the for-
mation of NAD+ [61–64]. Daily requirements for NAD+ syn-
thesis can be obtained either with dietary tryptophan or with
around 15mg/d of daily niacin, a collective term for nicotinic
acid (NA) and nicotinamide (NAM) [61], which can be
found in meat, fish, and dairy products [65].

Small-scale human clinical studies have shown that
NAD+ boosters such as NMN, NR, and niacin can increase
the levels of NAD+ in volunteers and are relatively safe for
human consumption [6, 66–72]. Most of the side effects
reported during treatment with NAM, NR, and NMN are
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Figure 1: Health benefits as a result of implementing approaches to
increase NAD+ bioavailability.
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minor (e.g., diarrhea, nausea, rashes, hot flashes, cramps in
the legs, erythema) and occur relatively rarely [73, 74].
Increased acetylcarnitine concentrations in skeletal muscle
and minor changes in body composition and sleeping meta-
bolic rate were reported in the recent study on NR supple-
mentation in healthy obese humans [75]. The evidence for
assessing the health risk is still limited, and long-term expo-
sure to NAD+ booster (NR, NMN) has not yet been investi-
gated in human clinical trials or human clinical trials are
not yet completed. In addition, there is insufficient data on
increasing the levels of NAD+ in various clinical disorders.

As data for some newly discovered NAD+ precursor
forms are scarce, NAD+ supplements should be tested in a
manner similar to drugs in development [72]. Niacin equiv-
alents/precursors are found in animal and plant foods,
mainly in the form of NA and NAM. Additionally, recently
discovered NAD+ intermediates, such as NMN and NR, are
also in foods, like cucumber, cabbage, and immature soy-
beans. Broccoli has 0.25–1.88mg of NMN per 100 g, avocado
and tomato 0.26–1.60mg/100 g. Much less NMN can be
found also in raw beef and shrimp (0.06–0.42mg/100 g)
[45] as well as human and cow milk at micromolar concen-
trations [76, 77]. NAD+ biosynthesis can be increased by
direct activation of NAD+ biosynthetic enzymes by several
AMPK and NAMPT activators, like nonflavonoid polyphe-
nol resveratrol, metformin, 5-aminoimidazole-4-carboxa-
mide ribonucleotide, P7C3, leucine, epigallocatechin gallate,
and proanthocyanidins [78–86]. CD38, its homologue
CD157, and PARP-1 inhibitors could additionally increase
NAD+ availability; however, they are registered as medical
drugs for cancer treatment [24], thus beyond the scope of this
review.

3. Eating Habits

NAD+/sirtuin pathway could be influenced also with nutri-
tional approaches, e.g., eating habits. At what time and what
and how much food we eat influence intracellular NAD+ bio-
availability by altering electron transport in mitochondria.
For example, a high-fat/sugar diet causes energy overload,
culminating in reduced NAD+/NADH ratio [87] and
decreases NAD+ levels [23, 63]. Also, a low AMP/ATP ratio
causes a decrease in NAD+ or NAD+/NADH, in situations
when enormous amounts of calorically rich food (lipids
and/or carbohydrates) are eaten. This additionally leads to
elevated blood sugar and insulin levels, increased NADH/-
NAD ratio, and increased formation of ROS, which triggers
the postprandial oxidative stress and oxidative damage [88–
91]. Large amounts of electrons from sugars enter the mito-
chondria after a large portion of food that generates more
superoxide at complex 1 (NADH: ubiquinone oxidoreduc-
tase) and complex III (ubiquinol: cytochrome c oxidoreduc-
tase) [92]. Efficient electron flow and avoidance of electron
leaks (superoxide formation) can be achieved if ATP is regu-
larly consumed; for example, by moderate sport activity or
any kind of physical work. This increases the AMP/ATP ratio
and NAD+ availability [87, 93, 94]. The link between the
metabolism and NAD+ is further strengthened by observa-
tions that besides overnutrition, tissue NAD+ levels decrease

also with high-fat diets and obesity [23, 63, 95–98]. Rappou
et al. [99] compared SIRT1, SIRT3, SIRT7, and NAMPT
expressions and total PARP activity in lean and obese sub-
jects. Results indicated lower sirtuins and NAMPT expres-
sions and increased total PARP activity in obese compared
to lean subjects. After a moderate weight loss, SIRT1 and
NAMPT expressions increased while PARP activity signifi-
cantly decreased in subjects upon the weight loss. Similar
results were obtained in healthy men during lipid overfeed-
ing [100]. Other studies observed that obesity is associated
with low NAD+ levels or SIRT pathway expression [101].
On the other hand, supplementation with NAD+ precursors
or intermediates activates sirtuins and oxidative metabolism
resulting in the protection against high-fat diet-induced obe-
sity [63], improved glucose tolerance and hepatic insulin sen-
sitivity [23], and lipid metabolism [45].

A high-fat caloric diet induces obesity through the pro-
tein CD38, which is a regulator of body weight and an
NAD+ consumer [102]. Mice deficient in CD38 are protected
against the high-fat diet-induced obesity due to boosted met-
abolic rate in part via a NAD-dependent stimulation of SIRT-
PGC1alpha axis [102]. Adipose tissue elevates the expression
of CD38 and inflammation-related genes in obese people
[103, 104]. In line, low expression of CD38 protected against
obesity when fed a high-fat diet in animals [102, 105].

NAD+ level is not only nutritionally controlled, but it
depends also on the sports activities and other lifestyle
factors.

4. Exercise and NAD+ Levels

Physical activity and exercise, as part of a healthy lifestyle,
have a significant impact on health outcomes, including
improved motor skills, healthy bones, enhanced aerobic fit-
ness, efficient heart and lung function, improved cardiovas-
cular health, lowered risk of stroke, certain types of cancer
and diabetes, improved metabolic flexibility and mitochon-
drial function, and a positive effect on cognitive function
and mental health—including on depressive symptom
improvement and anxiety- or stress-related disease [38,
106–108].

How does sports activity affect NAD+ levels? Aerobic
exercise training or any kind of exercise/sports activity
increases the amount of NAD+ due to the induction of skel-
etal muscle’s NAMPT expression that was shown in rodent
and human studies [109–111]. Namely, in human skeletal
muscle, exercise training reverses the age-dependent decline
of NAD+ by stimulating the NAD+ salvage pathway, in which
nicotinamide NAMPT is a rate-limiting enzyme [112]. Exer-
cise and aerobic sports activity increases the amount of
NAD+ due to the induction of skeletal muscle’s NAMPT
expression [109] and reverses the age-dependent decline of
NAD+ by stimulating the NAD+ salvage pathway [112]
through the 5′ AMP-activated protein kinase (AMPK) path-
ways [4].

NAD+ has an important role in the generation of intra-
cellular ATP, which is required for exercise and sports activ-
ities. On the other hand, as already mentioned, ATP
production in mitochondria represents the main source of
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free radical generation. The reduction state of complex I in
mitochondria depends strongly on the NAD+ and NADH
levels. Ameliorating the NAD+/NADH ratio by elevated
ATP consumption (e.g., sports activity) or decreased ATP pro-
duction (e.g., intermitted fasting, consumption of small por-
tions of food, and CR) regulates the magnitude of
superoxide-generation from the transfer of electrons to molec-
ular oxygen at mitochondrial complexes I and III and can thus
ameliorate the intensity of oxidative damage [113]. Increased
demand for energy during the exercise is sensed by the cell
and activates AMPK, which can modulate NAD+ bioavailabil-
ity [38]. Both exercise and caloric restriction trigger the meta-
bolic stress that follows by adaptation by inducing NAMPT
expression through the AMPK [4, 109, 114] resulting in
increased NAD+ levels available for sirtuins and PARPs.

A recent study by de Guia et al. revealed that different
exercise training methods reverse the age-dependent decline
in NAD+ salvage capacity in the human skeletal muscle
[112]. Namely, both aerobic and resistance exercise training
increased NAMPT levels in young and older individuals. In
aged rats, exercise training also increased NAD+, NAMPT
levels, and SIRT1 activity [111] and accelerates the de novo
biosynthesis of NAD+ from L-tryptophan [115].

The important function of NAD+ during sports activity is
its role as a hydrogen/electron transfer molecule for adenosine
triphosphate (ATP) production and mitochondrial biogenesis
in muscle cells [116]. Additionally, sports activity increases the
NAD+ amount also at the systemic level [117] that results in
health benefits at the organismal level due to the NAD+ role
in multiple and diverse cellular processes, in addition to redox
reactions, such as deacetylation and ADP-ribosylation [116].
During the intense sports activity, ATP is consumed; thus,
the need for NADH as the electron donor increases, which
in the end results in the boosted formation of oxidised
NAD+ and decreased NADH, i.e., an improvedNAD+/NADH
ratio. The total amount of NAD+ is not significantly changed
during the redox reaction; however, the NAD+/NADH (and
NADP to NADPH) ratio is changed in favour of NAD+ [61],
which activates sirtuins, PARPs, CD38, and other NAD+-con-
suming reactions. Since NAD+-consuming enzymes intervene
in many crucial cellular processes, many healthy processes at
the organismal level are enhanced by the implementation of
exercise and sports activity.

Surprisingly, NR, the NAD+ precursor, decreases exercise
performance in rats [118], most likely due to the pleiotropic
metabolic and redox properties of NAD+ and NADP+. Nico-
tinic acid also reduced the capacity for high-intensity exercise
in humans [119], which is ascribed to lower plasma free fatty
acids, leading to earlier fatigue. Studies onNAD+ precursor sup-
plementation implied prevention of vascular dysfunction, oxi-
dative stress, and muscle age-degeneration in mice [45, 46,
120]. Accordingly, it is important to preserve a high NAD+ to
NAD+/NADH ratio that can be achieved also by sports activity.

5. Circadian Rhythms, Sleeping Habits, and
NAD+ Levels

Sleep disorders predispose persons to chronic diseases like
obesity, depression, diabetes, and many cardiometabolic dis-

eases, which are significantly associated with mortality and
morbidity [121, 122] [123–125]. Contrary, a steady pattern
of waking and sleeping is associated with health promotion
and longevity [126]. Prolonged disruptions of circadian
rhythms are associated with negative health consequences
[127]. NAD+ levels and sirtuin activity regulate a healthy cir-
cadian rhythm of sleep and wakefulness; concurrently, the
NAD+ level is supervised by circadian rhythm and involved
in the circadian clock regulation. NAD+ levels oscillate with
a 24 h rhythm; these can be modified by feeding and sleeping
time [128–130]. The central internal clock is in the hypotha-
lamic suprachiasmatic nucleus, and the circadian rhythms
are coordinated by intracellular proteins called “circadian
clocks.” These proteins are regulated by a transcriptional
negative feedback loop between transcriptional activators
CLOCK and BMAL1 and repressors CRY and PER. CLOCK,
the core circadian regulator, is a histone acetyltransferase
whose activity is outweighed by the nicotinamide adenine
dinucleotide- (NAD+-) dependent histone deacetylase SIRT1
[131, 132]. CLOCK :BMAL1 heterodimer balances the circa-
dian expression of NAMPT, which regulates the NAD+ bio-
synthesis. The activity of NAMPT is constrained by
light—or sleep—deprivation and upregulated by darkness
and night [130].

With ageing, NAMPT activity declines, and conse-
quently, NAD+ bioavailability drops [7, 133], leading to the
deterioration of the circadian rhythm (change in amplitude,
period, and phase). Disrupted circadian rhythms were
reported in many pathological conditions including cardio-
vascular diseases, diabetes, cancer, and accelerated ageing
[134, 135]. On the contrary, matching the innate circadian
period results in health improvements [135–140].

6. Environmental Stress: Heat/Cold Shock and
NAD+ Levels

Exposure to the elevated heat for short time periods can
result in beneficial health effects. Cardiovascular responses
to long-term adaptations in response to heat stress result in
reduced blood pressure and arterial stiffness and improved
endothelial and microvascular function [141]. For example,
regular sauna bathing may be linked to several health bene-
fits, which include decreased risk of sudden cardiac death
and cardiovascular and all-cause mortality [142], reduction
in the risk of neurocognitive diseases and nonvascular condi-
tions such as pulmonary diseases, and amelioration of condi-
tions such as arthritis, headache, and flu [143]. What is more,
heat stress cardioprotection and improved postischemic
functional recovery in the heat-stressed hearts after cardio-
plegic arrest due to increased NAD+ and NADP+ concentra-
tions were observed [144]. Heat shock triggers an increase in
the NAD+/NADH ratio as a result of decreased NADH levels
and an increase in recruitment of SIRT1 to the hsp70 pro-
moter [25]. Enzyme nicotinamide mononucleotide adenylyl-
transferase (NMNAT), which catalyzes nicotinamide
adenine dinucleotide (NAD+) synthesis, is elevated during
conditions of heat shock and transcriptionally regulated by
the heat shock factor (HSF) and hypoxia-inducible factor
1α (HIF1α) in vivo [145, 146].
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In addition to heat stress, also cold stress-induced physi-
ological responses and activation of brown adipose tissue
(BAT) have health benefits [147]. BAT mainly burns energy
in contrast to white adipose tissue (WAT), which stores fat
[141]. In mouse and human BAT, cold exposure activates
NAD+ biosynthesis mediated by a rate-limiting enzyme,
NAMPT [148]. BAT is abundant in mitochondria and plays
a role in energy expenditure related to producing heat by an
energy-dissipating process of nonshivering thermogenesis,
leading to changes in lipid metabolism [149] and other health
benefits like the absence of low-grade inflammation,
increased insulin sensitivity, and decreased liver fat [150,
151]. Degradation, whitening, and impaired function of
BAT promotes obesity [152–155].

The facts supporting the “NAD+ > SIRTs > positive
effect” pathway as the mechanism of action for the beneficial
effects of NAD+ repletion strategies have been presented so
far. Are there indications of concerns about increasing the
levels of NAD+?

7. Potential Deleterious Effects of
Increased NAD+

As already discussed, NAD+ precursors, nicotinic acid (NA),
and NR decreased exercise performance in young rats [118]
and reduce the capacity for high-intensity exercise in humans
[119], although old individuals seem to benefit from NR sup-
plementation. Namely, increased NAD(P)H levels, decreased
oxidative stress, and improved physical performance were
observed only in the old subjects [156]. Kourtzidis et al.
[157] expressed concern that redox agents administered
exogenously in healthy young populations (not suffering
from antioxidant deficiency) might lead to adverse effects.
Nicotinamide (NAM) overdose was reported to cause hepa-
totoxicity in rare cases [158]. In addition, it was observed that
a high dose of dietary NR caused glucose intolerance and dys-
function of the white adipose tissue in mice fed a slightly obe-
sogenic diet [159].

Regarding longevity, overexpression of SIRT1 was found
not to extend lifespan in mice fed standard diets, although
they had better general health and fewer carcinomas [160].
Mitchell et al. [43] observed that supplementation with
NAM in the mouse model did not change the lifespan, in
spite of the improved healthspan. Additionally, Chen et al.
[161] challenge the paradigm that CR induces SIRT1 activity
in all tissues. Similarly, Frederick et al. [162] suggest that
NMN and NR increase in NAD biosynthesis is cell- or tis-
sue-specific.

It appears that the NAD+ levels could have both procan-
cer and anticancer effects, as NAD+ is a critical protective fac-
tor in early cancer development and could become a
damaging factor later in the phase of cancer progression
and promotion. Namely, during cancer promotion, progres-
sion, and treatment, increased NAD+ levels could have
adverse effects on the malignancy process due to increased
cell survival, growth advantage, increased resistance to radio-
and chemotherapy, and promotion of inflammation. In con-
trast, NAD+ restoration could prevent or reverse the pheno-
type of malignant cells in the early stages by inducing cellular

repair and adaptive stress responses and regulating cell cycle
arrest and apoptotic removal of damaged cells (reviewed in
[24]). In addition, the compound FK866, which inhibits the
nicotinamide recycling enzyme NAMPT, is a tumor apopto-
sis inducer due to the NAD+ depletion [163, 164] and is used
as an anticancer drug.

In the area of inflammation/sepsis, there is also contro-
versy regarding the NAD(+)-dependent sirtuin family, as ele-
vated NAD(+) levels play a different role in the different
stages of sepsis. In the initial (proinflammatory) phase, which
is characterized by a cytokine storm, overproduction of reac-
tive oxygen species (ROS), and metabolic shift [165], SIRT1
activation shows positive effects, whereas the SIRT1 expres-
sion should be inhibited in the later stages of sepsis [166].
Therefore, due to the dynamic phases of sepsis, the role of
SIRT1 cannot simply be defined as beneficial or detrimental.
Increased NAD+ might have also negative effects on inflam-
matory disorders, such as rheumatoid arthritis due to stimu-
lated inflammatory cytokine secretion by leukocytes [167].

Another potential risk could be posed by the toxic degra-
dation products and metabolites of NAD+ precursors, e.g.,
nicotinic acid adenine dinucleotide (NAAD), N-methyl nico-
tinamide (MeNAM), and 2-PY[71, 168]. Lastly, increased
NAM levels due to the supplementation with NAD+ precur-
sors (NAM, NR, or NMN) could inhibit PARPs and CD38
activities [169], while SIRT1 feedback inhibition in vivo by
NAM may not be so important [170, 171]. Increased levels
of NAM might alter also the methyl pool used to methylate
DNA and proteins [171].

8. Conclusions

It is not only the NAD/NADH redox role as hydride and
electron transfer in redox metabolic reactions but mainly
the NAD+ as the signalling molecule and substrate for sir-
tuins and PARPs that is responsible for the health benefits
and longevity. Cellular NAD+ content and an adequate
NAD+/NADH ratio can postpone pathologic processes asso-
ciated with impaired cell signalling and mitochondrial func-
tion [87, 172, 173]. Thus, for maintaining optimal cellular
functioning and organismal health, it is necessary to imple-
ment the lifestyle approaches that stimulate increased
NAD+ levels. The synergistic effects of different measures to
ensure a healthy lifestyle are important, as there is an inti-
mate and reciprocal relationship between them. For example,
sedentary lifestyle, overeating, and excessive intake of fat and
sugar are associated with disturbances in circadian rhythms
[174, 175] and downregulation of NAMPT gene expression
[4]. Implementation of the time-restricted feeding without
reducing the caloric intake (8 h per day feeding/16 h per
day fasting) improved the robustness of circadian and meta-
bolic rhythms and prevented metabolic diseases in mice on a
high-fat diet [176]. Lifestyle approaches, such as exercise and
CR, can reverse insulin resistance and type 2 diabetes melli-
tus (T2DM) [12]. Both manipulations increase the
NAMPT-mediated NAD+ generation, activate mechanistic
pathways of AMPK, and enhance the SIRT1 activity and
mitochondrial function [4, 114, 177, 178]. Sirtuins affect var-
ious cellular processes, including lipid metabolism, insulin
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secretion, and sensitivity [179]. NAD+ levels within cells are
regulated by its precursors’ intake, biosynthetic pathways,
and degradative enzymes [180], which can be additionally
balanced by selected lifestyle factors discussed here. In order
to provide sufficient NAD+ bioavailability and appropriate
expression of NAMPT, it is necessary to ingest sufficient
amounts of NAD+ precursors/intermediates in the vitamin
B3 forms, preferably as a part of a normal diet, to practice
regular and moderate sports activity, and to observe time
intervals between darkness and light exposure as well as the
appropriate time intervals between feeding and fasting.

The presented studies support the hypothesis that main-
taining NAD+ levels leads to healthy cell metabolism, which
is beneficial in terms of amelioration of metabolic diseases
and ageing. It should be stressed that NAD+ is not the only
factor, but rather one of the several components that influ-
ence cell health. There are many other positive effects of cal-
orie restriction, eating habits, exercise, circadian rhythms,
and environmental stress on human health that are beyond
the scope of this paper. Although many animal studies have
shown the link between NAD+ and healthspan, the complex
role of NAD+ in the etiology of ageing and age-related
chronic diseases in humans should be further elucidated.
The current state of knowledge about NAD+ positive effects
on ageing and healthspan is mainly based on experiments
on cell cultures and model organisms, so that the positive
health effects of NAD+ in humans will need to be confirmed
in future in-depth studies and clinical trials.
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